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GENERAL INTRODUCTION 

The synthesis of natural products and their analogs has been an important and active 

area of organic chemistry. There are many new strategies and methodologies of synthesis 

waiting to be discovered. We have been involved in the synthesis of analogs of biologically 

important compounds, and the development of new methodology for this synthesis. 

This dissertation is divided into three parts. The first part will deal with the synthesis of 

cyclopropane analogs of glutamic acid. The second part will describe the synthetic 

approaches to novel ion chelating tetracycline analogs. The third part will deal with the 

synthetic approaches to mitomycin analogs. 

Explanation of Dissertation Format 

This dissertation presents an alternate format and is divided into three parts preceded by 

a general introduction and followed by a general summary. Each of the parts is related to the 

others in that they are concerned with the synthesis of analogs of biologically important 

compounds. The three parts are intended to be separate, publishable articles. The numbering 

scheme adopted for the compounds and references is independent in each section. 
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PART I. 

SYNTHESIS OF ANALOGS OF GLUTAMIC ACID 
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HISTORICAL 

There is considerable interest in unnatural and uncommon amino acids from a synthetic 

and a biological perspective. Some of these novel amino acids have potential as suicide 

enzyme inhibitors. ̂  These inhibitors are defined as a class of irreversible inactivators of 

specific target enzymes. Suicide enzyme inhibitors differ from the common irreversible 

inhibitors in that the reactive functional group is latent in the molecules in solution. Only after 

binding to the target enzyme and after the enzyme begins catalysis is the reactive chemical 

grouping uncovered. The particular chemical reaction sequence of the enzyme is required to 

unravel the inactivator. This activation occurs in a precise microenvironment only, the active 

site of the target enzyme. If covalent capture is efficient, then only the conscripted enzyme 

molecule is modified and its catalytic activity destroyed. The term suicidal inhibition conveys 

the role of the enzyme molecule in catalyzing its own destruction. 

A subclass of suicide enzyme inhibitors is the cyclopropane-containing amino acids. 

These amino acids are particularly interesting because they constitute a unique form of 

"conformationally constrained" amino acids, which have been found in nature, generally in 

the unbound form or as simple dipeptides. Also, as a consequence of the severe carbon-

carbon bond angle deformation demanded by the cyclopropane ring, a latent instability is 

incorporated into the peptide, which if unmasked in vivo, will form reactive entities capable 

of capturing nucleophiles or electrophiles present in a receptor or an enzyme active site. 

Many cyclopropane amino acid analogs exist in diastereomeric E- and Z-forms in which 

the characteristic functionality at the ^-carbon of the specific amino acid is cis to the carboxyl 

or cis to the amino function. Of course, each of these diastereomers consists of an 

enantiomeric pair. 
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R / \ .NH2 H / \ NH2 

H' COOH R ^COOH 

Z-Isomer E-Isomer 
1 2 

There are some naturally occurring cyclopropane amino acids,^ such as 1-aminocyclo-

propane carboxylic acid (Acc) (3), hypoglycin A (4), coronamic acid (5), camosadine (6), 

and 3,4-methanoglutamic acid (7). 

^COOH Hoocy^ 

NH2 HgN H 

COOH 

H' 'NH, 

H A COOH aOOC H NH2 

HiN A^COOH 

NH H 

6 7 

Several synthetic cyclopropane amino acids have been reported, such as 

aromatic 2,3-methano amino acid 8,2,3-methano valine (9), and 2,3-methanoproline (10). 

^̂ 2» Ç^COOH 
H 

8 9 10 
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Many different approaches to the chemical synthesis of natural and unnatural 

cyclopropane amino acids are worth reviewing for their chemical content and bearing on 

important biological investigation. 

1-Aminocyclopropane carboxylic acid (Acc) (3) was first isolated from cider apples 

and perry pears by Burroughs in 1957.^ It has been found to be the biosynthetic precursor to 

the plant hormone ethylene^ and is a substrate to the PLP-linked enzyme ACPC deaminase, 

which converts Acc to ammonia and 2-ketobutyrate.^ 

One of the earliest and straightforward synthetic methods entails the alkylation of a 

glycine derivative or congener with ethylene dibromide or its equivalent. Alkylation of the 

diester 11^ gave the cyclopropane diester 12, which was followed by conversion of one 

ester function into an amino group. Further transformation afforded the free amino acid 3. 

COOR' A COOR- A COOH 

^COOR' Base COOR' ^ NH2 

11 12 3 

A second synthetic approach to Acc 3 is the "diazo addition" method in which 

diazomethane is added to an a-substituted acrylic acid derivative 13, forming a pyrazoline 

14. Intermediate 14 can be converted into the desired cyclopropane 15 by light or heat. 

Bregovec^ and Hiyama^ used this method for the synthesis of Acc 3. 
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Coronatine, a toxin produced by Pseudomonas corona-facience, which induces 

chlorosis in Italian ryegrass, contains coronamic acid (5). Coronamic acid (5) is N-acylated 

by coronafacic acid to give coronatine. 

Ichihara and his coworkers reported the first synthesis of 5 in 1977.^^ Their synthesis 

of 5 began with the diester 20, prepared by dialkylation of dimethyl malonate with 1,4-

dibromo-2-butene followed by hydrogénation of the remaining vinyl groups. Aminolysis of 

the less hindered ester gave the amide 21 which was converted into the urethane 22 by 

Hofmann rearrangement. Hydrolysis of 22 gave racemic 5. 

CO2CH3 NH3 H A .CONH2 Br2, NaOH 

MeOH ^eOH 

20  21  

NHCO2CH3 H2O 

CO2CH3 

22 

A later synthesis of racemic 5 in Stammer's group was accomplished by the addition of 

diazoethane to a dehydroalanine derivative followed by pyrolysis and deblocking.^'' 

^Boc 1. CH3CH2CHN2 NHBoc 

CH2=CC02pNB 2. A 

2 3  2 4  
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In 1984, camosadlne (6) was isolated from a red algae, Grateloupia carmosa ^4, by 

Wakamiya et al. They also reported the synthesis of 6 which proceeded by way of the 2,3-

methanoglutamic acid derivative 25.15 Conversion of the y-ester function of 25 into an 

amino group by Hofmann rearrangement of the corresponding amide gave 26. The DCC 

coupling of compound 26 with (R)-(+)-a-methylbenzylamine gave the separable amide 27. 

Deprotection of the y-amino group, guanidation, deblocking, and hydrolysis gave 

camosadine (6). 

CH O C^A^NHBoc 1. NHg/MeOH nHO^^A^NHBoc 
3 2 ^COzH 2. Brz, NaOH 

25 26 

1. Z-Cl, NaOH zhN-—su^V^^Boc 1. Hg, Pd/C 

2. (+)-PhCH(CH3)NH2 H^'^C0NHCH(CH3)Ph 2. DNG 

DCC-HOBt 

N-NO, 

^ I H^^^C0NHCH(CH3)Ph 2.6MHC1 
H 

28 
* Z = benzyloxycarbonyl 

DCC-HOBt = N,N'-dicyclohexylcarbodiimide - 1-hydroxybezotriazole 

DNG = 3,5-dimethyl-l-nitroguanylpyrazole 

In 1969, cis- and /raw5-3,4-methanoglutamic acids (7) were isolated and identified. 

The first synthesis of these amino acids 7 proceeded by rhodium acetate catalyzed addition of 
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diazoacetic ester to (2S)-vinyl glycine 29 which gave four chromatographically separable 

diastereomers of 30. Deprotection of 30 gave the desired amino acid 7. 

Y^.NHCOjR N2CHCO2R" 

Rh2(OAc)4 

29 

^ \ ,NHC02R 

H 

30 

Yamanoi and Ohfune reported the enantioselective synthesis of 7 in 1988. 

Deblocking of the alkene 31 (prepared from (2S)-2-amino-3-butenol), diazotization, and 

ring-closure gave the desired isomer 32 in a 6:1 ratio. Removal of the ketal and hydrolysis of 

the amide, followed by the necessary N-blocking, oxidation, and N-deblocking afforded 

enantioselectively the natural isomer of 7, 

BocNHCH 

H 

31 

1. TMSOTf 

2. NaNOj, pH3 

3. Pd(0Ac)2 

H 
O 

N-

H H 

32 

O 

1. AcOH, H2O 
2. NaOH 

3.( Boc)20, pH9 

4. Jones Ox. 
5.TFA 

H NH 
HOOC 

COOH 

(2S,3S.4S)-7 

Several methods have been used to prepare synthetic cyclopropane-containing amino 

acids which may have significant biological activities, such as antibiotic and enzyme 

inhibitory activity. Some aromatic cyclopropane amino acids have been synthesized. 
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Stammer and coworkers reported the first synthesis of the (E)- and (Z)-isomers of racemic 

2,3-methanophenylalanine 36 from 33.They used mild hydrolysis of imino ester 

intermediate 35 which was formed from the N-benzoyl group by treatment with Meerwein's 

reagent. Hydrolysis of the remaining methyl ester or hydrogenolysis of the benzyl ester 

afforded the free amino acid 36. Isomerization of 33^® with hydrogen bromide gave the E-

oxazolone 37 which was converted into the E-amino acid by the same procedure as was used 

for the Z-isomer. Also, recently, a chiral synthesis of 36 was reported by Fernandez et al.^l 

Ph Ph 

Ho Ph. '• 'N HCl WY H^COOH 
P 

34 
^ 35 3. HOAc 362 

CH2N2 

Ph Ph 

« 'b p» o 

33 37 36E 

A number of the 2,3-methanophenylalanines 36, prepared by this method, 

were shown to be reversible time-dependent inhibitors of both 3',4'-dihydroxyphenylalanine 

(DOPA) decarboxylase and tyrosine aminotransferase. 

(Z)-2,3-Methanohistidine has also been synthesized by diazomethane cyclopropanation 

of the appropriate oxazolone.22 This cyclopropane analog of histidine had a weak inhibitory 

effect on histidine decarboxylase. 
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NHCOjR (CH3)2CN2 

NHCO2R" 
^COjpNB 

CH2=C' 
\ 
CO2PNB 

42 43 

hv 
NHCO2R" 

9 
CO2PNB 

44 

The synthesis of racemic 2,3-methanoproline (10) has been accomplished by 

diazomethane cyclopropanation of the 2,3-dehydroproline derivative 45 followed by 

deblocking.24 

Z=C00CH2Ph 

This cyclopropane analog, racemic 2,3-methanoproline (10), was found to be a weak 

inhibitor of an ethylene-forming enzyme in cucumber cotyledons and squash seeds. 

Other cyclopropane analogs of aliphatic amino acids, such as 2,3-methanoleucine 

(47)2. 2,3-methanohomoserine (48)25, and 2,3-methanomethionine (49)25, were prepared 

by the diazoalkane method. 

10 

Z z 

46 45 
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RESULTS AND DISCUSSION 

We have been interested in the cyclopropane amino acids because of our research in the 

development of novel suicide inhibitors of glutamate decarboxylase (GAD) and aspartate 

aminotransferase (AAT). 

NH2 

HOOCr ^COOH 

glutamic acid 

I'Nri; NH2 

HOOC^^ 
COOH 

aspartic acid 

We proposed cyclopropane diacids 52 and 53, which represent cyclic single-

conformation analogs of glutamic acid, as enzyme-activated inhibitors. 

HOOC,A^( 
HOCKT 

COOH 

NH2 
,COOH 

H^ ^NH2 

5 2  5 3  

Our rationale for considering 52 and 53 as possible enzyme inhibitors is shown 

below. 

COOH 

i COOH 

NH2 

CHO 

N; -CH3 

H 

COOH 

COOH 
Enz-Y >A/ (% 

I 
H 

54 

N+ "CH3 

COOH 
Enz-Y^ ^COOH 

:N-H 

"TÏ ^N:;̂ ch3 

H 

55 
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In analogy with the facile opening of doubly activated cyclopropanes demonstrated by 

Stewart^^ and the Danishefsky group,28 we speculated that pyridoxal phosphate adduct 54 

would be reactive to nucleophiles and that it might form a covalent bond with a proximate 

amino or phenol group of the enzyme. The resulting dipolar intermediate would rapidly close 

to form the aziridine 55, thus making the addition irreversible. An X-ray determination of the 

adduct of AAT with 2-methylaspartate indicated that the nucleophile could be the phenol 

oxygen of tyrosine 70*.29 Indeed, the Walsh groupé has recently postulated that 

nucleophilic attack on a cyclopropane methylene group is involved in the mechanism by 

which a bacterial deaminase converts Acc (3) into 2-oxobutyrate. 

As the introduction indicated, a survey of literature methods for the synthesis of 

cyclopropane carboxylic acids revealed that there were two primary strategies : dipolar 

cycloadditions of diazo compounds and alkylation of 1,2-dihalides. The dipolar additions of 

diazo compounds to dehydroalaninates, followed by thermolysis or photolysis of the 

resulting dipolar addition product, constitute an effective method for the synthesis of many 

cyclopropane-containing amino acids.^ » 23 However, the yields are poor when the 

dipolarophile has bulky beta substituents or when ethyl diazoacetate is employed. Notably, 

diester 56, the closest literature analog to amino acids 52 and 53, is produced in only 12.5% 

yield. 30 

+ NoCHCOoEt 
NHAc NHAc 

56 
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to yield the highly reactive intermediate, dimethyl A'-cyclopropene-1,2-dicarboxylate (59), 

followed by addition of the alcohol to the strained double bond. 

Initially, we tried to make the cyclopropane amino diester 63 and 64 from 58 by the 

McDonald method. Reaction of 58 with potassium hexamethyldisilazane (KHMDS, 1.0 M 

in toluene) in liquid ammonia at -78°C did not give the desired products 63 and 64. 

We found that in this reaction, debromination of 62 might be crucial. So, we 

attempted a two step reaction for making 63 and 64. Bromocyclopropane compound 62 

was obtained from McDonald's method. The rapid addition of KHMDS (IM, toluene) to 62 

in liquid ammonia and THF at -78°C gave a mixture of 63 and 64 in 35% to 50% yield after 

purification by silica gel chromatography. 

The relative amounts of diesters 63 and 64 produced in each experiment were 

variable. The structures of the diesters 63 and 64 were assigned after comparison of their 

NMR spectra with that of 60.^^^ 

In order to accomplish the synthesis of 52 and 53, mild hydrolysis conditions were 

applied to each diester. Hydrolysis of each diester 63 and 64 with lithium hydroxide in 

THF-H2O (4:1) at room temperature for 1 day, followed by acidification with 2N HCl 

58 
KHMDS 

63 & 64 

KHMDS 

6 2  63 & 64 
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solution at 0°C, gave the crude amino acids, 52 and 53, respectively. Each crude diacid was 

separated by preparative HPLC by a gradient elution using TFA in acetonitrile. 

"OH _H:_ 

MEOSC^^COGME HOOC COOH 

63 52 

NHz^^COzMe NH^^^COOH 

MeOz/^H HOOC H 

6 4  5 3  

With samples of 52 and 53 in hand, the enzyme inhibition experiments were performed 

by Metzler's group.32 Unfortunately, our amino diacids 52 and 53 do not show any 

inhibition of AAT. However, the facile preparation of these amino diacids by way of the 

cyclopropene 59 will make possible the synthesis of many other analogs, some of which may 

be enzyme inhibitors. 
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EXPERIMENTAL 

Unless otherwise noted, materials were obtained from commercial suppliers and were 

used without purification. Diethyl ether and tetrahydrofuran (THF) was distilled from 

sodium benzophenone ketyl. N,N-Dimethylformamide (DMF) was dried by azeotropic 

distillation with benzene, followed by vacuum distillation. Dichloromethane (CH2CI2) and 

methyl alcohol were distilled from calcium hydride. All reactions were conducted under a 

nitrogen atmosphere, and all extracts were dried over anhydrous sodium sulfate or anhydrous 

magnesium sulfate. Apparatuses for experiments requiring anhydrous conditions were flame-

dried under a stream of nitrogen or were dried in a ISO^C oven for 12 h. Flash 

chromatography was performed on Kieselgel 60, mesh 230 - 400. Infrared spectra were 

obtained on a Perkin-Elmer 1320 spectrophotometer. Proton nuclear magnetic resonance 

spectra (300 MHz) were obtained using a Nicolet Magnetics Cooperation NT-300 

spectrometer. All chemicals shifts are reported in S relative to tetramethylsilane as an internal 

standard. Splitting patterns are designated as a s (singlet), d (doublet), t (triplet), q (quartet), 

and m (multiplet). Carbon-13 NMR spectra were determined on a Nicolet NT-300 

spectrometer and are reported in S relative to CDCI3 (77.06 ppm). High resolution mass 

spectra were recorded on a Kratos model MS-50 spectrometer. Low resolution mass spectra 

were recorded on a Finnegan 4023 mass spectrometer. Melting points were determined on a 

Fisher-Johns melting point apparatus and are uncorrected. Elemental analyses were 

performed by Galbraith Laboratories Inc. The purity of all tide compounds was judged to be 

>90% by ^H NMR spectral determinations. 

Dimethyl l-aiiiinocyclopropane-l,2-dicarboxyIate (63 and 64). To a 

solution of bromo diester 58 (180 mg, 0.76mmol ) in liquid ammonia (5 ml) and THF (5 ml) 
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52: 1H NMR (CDCI3) 5 1.66 (dd, J = 6.0, 9.9 Hz, IH), 1.96 (dd, J = 6.0, 8.4 Hz, 

IH), 2.39 (dd, J = 8.4, 9.9 Hz, IH); 13c NMR (DMSO-DÔ) 6 18.75, 56.32, 65.12, 

169.17, 170.47; IR (CHCI3) 2930, 1720 cm"l. Compound 52 was found to be greater than 

98% pure using a Beckmann 1 lOB HPLC eluting with 0.1% TFA in water. At a flow rate of 

1 ml/min, the product had a retention time of 8.21 min. 

53: 1H NMR (CDCI3) 5 1.77 (dd, J = 5.7, 9.0 Hz, IH), 1.98 (dd, J = 5.7, 7.8 Hz, 

IH), 2.58 (dd, J = 7.8, 9.0 Hz, IH); 13c NMR (DMSO-Dô) 6 29.13, 56.85, 64.38, 

168.72, 171.96. 
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PART n. 

SYNTHESIS OF NOVEL ION CHELATING TETRACYCLINE ANALOGS 
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INTRODUCTION 

The tetracyclines are a well established class of antibiotics. They have a wide spectrum 

of antibiotic activity and also chelate various metal ions to form complexes. We have been 

interested in the synthesis of novel ion chelating analogs of tetracyclines. 

This manuscript will describe the synthetic approaches to several promising chelating 

analogs, such as monocyclic, bicyclic, and tricyclic analogs. 
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HISTORICAL 

The tetracyclines are a family of broad spectrum antibiotics which have a common 

perhydronaphthacene skeleton. Tetracycline antibiotics have played an important role in 

human and veterinary medicine, and in animal nutrition. 

I. General Aspects of Tetracyclines ̂  

Duggar isolated the first tetracycline 1, chlorotetracycline (CTC, aureomycin), in 1948 

from the culture filtrate of Streptomyces aureofaciens.^ In 1950, Kane, Finlay and Sobin of 

Pfizer Laboratories reported tiie discovery of another broad specdiun tetracycline antibiotic, 

oxytetracycline (2) (OTC, terramycin), from the fermentation liquors of Streptomyces 

rimosus? Woodward and coworkers elucidated its structure.^ The prototype compound 

tetracycline 3 (TC) was first prepared by catalytic hydrogénation of chlorotetracycline (1).^ 

In 1957, McCormick et al.^ discovered 6-demethylchlorotetracycline (4), a metabolite of a S. 

aureofaciens mutant 

Rs R4. R3„ f2 N(CH3)2 

OH 

T T T ÔHÎP 
OH O HO O 

CONHRI 

1 - 8 
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Table 1. Therapeutically important tetracyclines 

1. Chlorotetracycline (Aureomycin, CTC), Ri=R2=H, R3=0H, R4=CH3, 

R5=C1 

2. Oxytetracycline (Terramycin, OTC), Rl=R5=H, R2= R3=0H, R4=CH3 

4. Demethylchlorotetracycline (DMCT), Ri=R2=R4=H, R3=0H, R5=C1 

5. Rolitetracycline, Pyrrolidino- (PMT), Ri=CH2-pyrrolidino, R2=R5=H, 

6. Methacycline (MOTC), Rl=R5=H, R2=0H, R3,R4=(CH2=) 

7. Deoxycycline (DOOTC), Rl=R3=R5=H, R2=0H, R4=CH3 

8. Minocycline (MITC), Ri=R2=R3=R5=H, R4=N(CH3)2 

As the name indicates, tetracyclines are derived from a system 9 of four linearly 

annelated six-membered rings, and a characteristic arrangement of double bonds. Two 

distinct chromophoric regions A and BCD are separated by the sp^ carbon atom 12a. 

9 

The tetracyclines opened a new era of antibacterial chemotherapy. They are active orally 

and parenterally, and are relatively well tolerated. Also, their antimicrobial spectrum was 

broader than that of any other antibiotic then known. In accord with their mutual chemical 

3. Tetracycline (TC), R1=R2=R5=H, R3=0H, R4=CH3 

R3=0H, R4=CH3 
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similarity, all tetracyclines have a very similar activity, e.g., activity against gram positive and 

negative bacteria. 

Tetracyclines inhibit many enzyme reactions important for vital processes of bacterial 

and mammalian cells, e.g. oxidative phosphorylation and electron transfer. The 

tetracyclines are actively transported into the cells of susceptible bacteria and exert a 

bacteriostatic effect by inhibiting protein biosynthesis after binding to the 30S ribosomal 

subparticle.l'' The binding apparently results in an inhibition of translocation of amino acid-

laden transfer RNA (comprising the growing peptide chain) from the donor to acceptor site. 

Cessation of protein biosynthesis results and the cells stop multiplying and eventually die. 

The 80S ribosomes of eukaryotes, including yeasts and man, are much less sensitive to the 

effect of tetracyclines. This accounts for the useful selective toxicity of these drugs. 

The tetracyclines also have a great tendency to form reversible complexes with cations 

and anions as well as with substances of low or high molecular weight. Theses properties 

are important for understanding their antibiotic activity, pharmacokinetics, and side effects. A 

selection of complex forming agents is shown in Table 2. 

Table 2. Complexing agents for tetracyclines 

Metal cations Fe^"*", Fe^"'", Cu2+, Ni^+, Co2+, Zn^^, Mn^+, Mg2+, Ca2+, 

Be2+, AI3+, Zr4+. 

Anions Phosphate, citrate, salicylate, p-hydroxybenzoate, saccharin 
anion. 

Neutral caffein, urea, thiourea, polyvinylpyrrolidone. 
compounds 

Biopolymers serum albumin, lipoproteins, globulins, RNA. 
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the asymmetric centers C-4, C-4a and C-12a is essential, whereas the configurations at C-5, 

C-5a and C-6 may be altered. The amide hydrogen may be substituted by a methyl group, 

but large groups have a deleterious effect except for those that are eliminated spontaneously 

in water. The dimethylamino group may be replaced by a primary amino group without loss 

of in-vitro activity, but all other changes so far lead to a decreased bacteriostatic action. The 

hydrophobic part of the molecule from C-5 to C-9 may be altered in various ways. 

Modifications of C-6 and C-7 in particular afforded products having greater chemical 

stability, increased antibiotic activity, and more favorable pharmacokinetics. 

IL Synthesis of Tetracyclines 

In spite of their broad spectrum of activity, tetracyclines are by no means ideal 

chemotherapeutic agents for the cure of all bacterial infections. Therefore, the structures of 

these molecules have been modified by chemical or enzymatic methods to correlate the 

individual structural elements with biological activity. Also, since the structures of the first 

tetracylines were determined, their total synthesis was considered. Because of the 

complicated stereochemisty and substitution, few total syntheses have been reported. In this 

dissertation, only some synthetic approaches to tetracyclines and their analogs are described. 

In 1959 - 1961, Fields, Kende and Boothe succeeded in synthesizing 10 

and 11, which could be precursors of tetracyclines. At the same time, Muxfeldt's group 

synthesized the precursors 12,13, and 14.^1 
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O O OH R3 O O 
CONH2 

OH 

15 16, Ri=R2=R3=R4=H 

17, RI=R3=R4=H, R2=CH3 

18, RI=N(CH3)2,R2=CH3,R3=OH,R4=H 

19, RI=H,R2=CH3,R3=R4=OH 

In 1957, Barton's group began preliminary work on the total synthesis of 

tetracycline. 13 Their strategy was to build up a four-ring system in which rings A and D are 

aromatic. Later, ring A was hydrogenated. After many unsuccessful attempts, it was found 

that the easily accessible acetal 20 furnished the tetracycline 21 upon proton-catalyzed 

photocyclization. Further transformations afforded compound 22 which contains the 

structural elements of tetracycline except for ring A. Deprotection of 22 gave the fully 

aromatic 6-methylpretetramide 23, which is the first isolable intermediate in the biosynthesis 

of tetracycline. Recently, Barton and coworkers reported that base-catalyzed 

photocyclization provided an efficient route to the fully substituted linear tetracyclic acetate 

from the naphthofuran. 14 

O o 

Ph Ph 

CO2CH3 

OCH3 

20 2 1  
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4 steps 

HO 

H N(CH3)2 

CO2H 

HO 

H N(CH3)2 

JxL^OH 

JT 
0025^° 

CONHtBu 

29 30 

N(CH3)2 

X .OH 

N(CH3)2 
1 .OH 

3 steps 

CONH-tBu CONH2 

OH O OH OH OH O HO O 

31 DL-32 

The Woodward/Pfizer synthesis began with the aromatic ring D, onto which rings C, B 

and A were built stepwise by condensation reactions. Methyl /71-methoxybenzoate 24 was 

converted in nine steps into the tetralone 25. Condensation of 25 with oxalic ester and 

sodium hydride gave the tricycle 26. Stepwise construction of the A ring was the most 

difficult problem. n-Butyl glyoxylate was condensed with 26 to afford 27. Stereospecific 

introduction of dimethylamine to the exocyclic double bond gave 28. Reduction of the keto 

group in ring B and hydrolysis of the ester afforded the acid 29. Reductive dehalogenation 

and reaction with ethyl N-(terr-butyl)maIonamate gave the corresponding compound 30, 

which was cyclized to give the tetracycline 31. Stereospecific introduction of a hydroxyl 

group at C-12a led to inversion of the 4-dimethylamino group from (5- to the natural a-

configuration. Removal of the protecting groups then afforded DL-32. The overall yield 

of the 22-step synthesis was 10"^%. 

After many years of intensive preliminary experiments, Muxfeldt and his coworkers 

developed an extremely useful method by which not only natural tetracyclines, e.g. the 
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complicated teramycin with its six asymmetric centers, but also new types of tetracyclines 

could be prepared. The strategy of Muxfeldt was utilized for the synthesis of DL-1,6-

demethyl-6-deoxychlorotetracyline 40,^6 which was built from the easily pre-prepared 

fragments 33,34, and 36. Condensation of the aldehyde 33 and the oxazolone 34 gave the 

condensation product 35. The reaction of compound 35 with the glutaramate 36 afforded 

the tetracycle 37 by a double ring closure. This elegant condensation in which three new C-

C bonds were produced in a single step was the key step of the synthesis. Epimerization of 

the 4-benzoylamino group and purification by fractional crystallization or by chromatography 

gave the desired pair of enantiomers 37. 

Ph 
CI CI 

O 
CHO 

Ph 
CH3O O 

DL-33 

CH3O O 

O O 

36 
CI NHCOPh 

CONHtBu 

NaH 

CH3O O HO OH 

DL-37 
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Introduction of the 12a-hydroxyl group to give 38 was effected smoothly by 

autoxidation in DMF in the presence of sodium hydride. Debenzoylation of compound 38, 

followed by methylation of the amino group, provided the compound 39. Finally, removal 

of the protecting groups by hydrogen bromide gave product 40 as its hydrobromide. 

DL-37 

CONHtBu OH 
CH,0 O HO 

38 

„ N(CH3)2 
® = .OH 

HBr 

„ N(CH3)2 
^ = OH 

CONHtBu CONH, 

O HO O 

DL-40 

This synthesis could be set up to yield many different products by using differently 

substituted starting units. For example, Muxfeldt et al. synthesized oxytetracycline (2) in 

racemic form in 19681^, and also DL-anhydroaureomycin (41)^ ^ by this method. 

a H3Ç N(CH3)2 
" " = .OH 

Ç1 H 

CONH, 
HO O HO O 

DL-41 

CHO 

CH3O O 
DL-42 
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In 1985, the Merck group reported a total synthesis of 6-thiatetracycline (56), a new 

synthetic tetracycline, which showed activity against tetracycline-resistant organisms.^ ̂  

Their synthesis was based on the general strategy of Muxfeldt. 
CI CI 

SH 
COOH CHO 

51 52 53 

53 + 
N=/ 

9 
Ph 

Pb(0Ac)2 

OH O 
54 

NaH 

CHjOJC^^^Y^CONHJ 

O 

H 
: 

CONH, 

OH O OH O 

DL-55 

H 
S : ̂  _0H 

OH I 
OH O HO O 

CONH, 

DL-56 
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Reaction of the thiol 51 with dimethylglutaconate, followed by saponification, provided 

the corresponding diacid, which was cyclized in liquid hydrogen fluoride to give the 

carboxylic acid 52. Demethylation with HBr/CH3C02H, dechlorination, and 

acylchlorination followed by Rosenmund reduction gave the aldehyde 53. Condensation 

with the thiazolone afforded 54. Reaction of 54 with methyl 3-oxoglutaramate and 

subsequent cyclization with sodium hydride yielded the tetracyclic compound which was 

epimerized to the desired isomer 55. Further transformation of 55 gave thiatetracycline 56 

as a racemic mixture. 

Parsons and coworkers also reported new routes to thiatetracycline analogs, via an 

intramolecular Diels-Alder approach.22 
OMe ONfc 

0-HSC6H4CO2H 

AIBN, xylene 

OMe 

57 

OMe OMe 

OMe^NMeg O 

6 0  

H2O 

A 

OMe OSiMej 

59 

OMe 

o-dichlorobenzene 

O 

6 2  

OMe OMe O 

61 
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Treatment of the ethynyl compound 57 with thiosalicylic acid in hot xylene containing a 

catalytic amount of azoisobutyronitrile (AIBN) gave the sulphide 58. Addition of methyl 

lithium to 58, followed by silylation with TMS-Cl, gave the silyl enol ether 59. Reaction of 

59 with N,N-dimethylmethyleneammonium chloride, followed by basic workup and 

subsequent methylation, afforded the quaternary ammonium salt 60. Conversion of 60 to 

61 and intramolecular Diels-Alder reaction of 61 gave the thiatetracycline analogs 62. 
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RESULTS AND DISCUSSION 

The tetracyclines are a well established class of antibiotics. They have a wide spectrum 

of antibiotic activity and also chelate various metal ions to form complexes. Their high 

affinity for calcium ions has led to dietary modifications for patients who use these 

tetracyclines. The separation of antibiotic activity from chelating ability would enable 

researchers to study the biological effects of metal ion chelation without interference from 

other effects. The tetracycline 3 is shown below. 

The dimethylamino group at C-4 and the chromophoric keto-enol 

systems in ring A and BCD are essential for antibiotic activity. Since the chromophoric keto-

enol systems in rings A and BCD are likely responsible for the ion chelation effects, we have 

attempted to synthesize simple chelating analogs (bicyclic, tricyclic compounds) without the 

dimethylamino group. We proposed several chelating analogs of tetiracyclines which are 

shown below. 

N(CH3)2 

OH 

CONHI 

3 
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OH 

O 

OH O OH RO O OH 

63 64 
a, R=H,X=OH 

b, R=H,X=NHOH 

OH 

OEt 

X O HO O OH O OH O O 

6 6  65 

a, X=H,R=CH20CH3 
b, X=OH,R=H 

I. Synthetic approaches to the tricyclic analog 63 and the monocyclic 

analogs 64 

The tricyclic analog 63 was prepared by the tandem Claisen-Diels-Alder methodology 

developed in our research group.23 
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KOtBu/tBuOH 

NaH/THF,RT 

0 
1 

CH) 

OH O 
67 OH O OH 

69 CH) 

CI A 

O 
68 63 

However, the tricyclic analog 63 did not show a chelating activity with calcium 

ion. A possible problem was that the tricyclic ring system constrained the movement of the 

functional group in the analog. Monocyclic analog 64 is far more flexible. Unfortunately, 

acid 64a did not exhibit useful activity. However, the hydroxamic acid 64b might show 

useful activity and became our next synthetic objective. Lactone intermediate 72 was 

generated by treatment of 64a with DCC. 

COOH 

OH O OH 

64a 70 71 

XH=CH2(C02Me)2 

allyl amine 

NHgOH 
72 73 
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OMOM 

OMOM 

Our second approach involved the reaction of the dianion of a beta-diketone with an 

ester or an activated acyl group. The simple model study with the dianion of acetylacetone 

78 was very successful.24 However, when the desired diketone dienolate 80 was 

employed, only starting material were recovered. 

OH O 

O O 

AA 
78 

OH O 

77 + 

,OCH OCH, 

OH O OH O 

8 1  
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Reaction of the dianion of the diketone 83 with ortho-methoxybenzaldehyde (82) 

afforded the aldol product 84 in 90% yield. Reaction of the dianion of the aldol product 84 

with dibenzoyl peroxide afforded 85 as two diastereomers.25 Both diastereomers reacted 

slowly with manganese dioxide to provide triketone 86. 

.OMOM 

CH3O CH3O 

OMOM 

OH O 
84 

Keto & enol forms 

NaH, benzene 

(PhC00)2 

OMOM 
MnO? 

CH3O OH O 

85 

R=PhCOO-

OMOM 

Deprotection 

Unfortunately, deprotection of the MOM group, the methoxy group, and the benzoyl 

group did not occur. Even though we had an aldol adduct 84 from the intermolecular aldol 

condensation, many problems were encountered in Uiis route. Therefore, we next examined 

an intramolecular acylation example. 
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However, neither removal of the MOM protecting group in 91 nor the rearrangement of the 

triketone 90 was successful. The rearrangement of 93 and 94 also failed. 

MeO. 

93 

PhCHgO, 

III. Synthetic approaches to analog 66 

After several attempts to synthesize novel ion chelating analogs of tetracyclines, we 

decided to prepare the promising bicyclic analog 66. 

HjÇOHH gN(CH3)2 

.OH 

OH O OH O O OH O OH O 

66  

Our proposed analog 66 has the chromophoric keto-enol systems which can be found 

in the natural tetracycline 3. Also, analog 66 has a hydroxy group at C-5 which could be an 

additional ligand for complex formation. In contrast to the previously proposed analog 65 

which contains the A and D rings, the bicyclic analog 66 contains the B and D rings which 

might be more rigid and stable under some depro tec ting conditions. Our synthesis started 

from the readily available compound 95, which was prepared by a photochemical process 



www.manaraa.com

51 

developed in our research group.27 Irradiation of a mixture of an excess o-methoxy 

benzaldehyde and p-quinone in degassed benzene gave the corresponding photoadduct 95 in 

~ 60% yield. Selective methylation of compound 95 afforded the monomethylated 

compound 96 in 88% yield by treatment with potassium carbonate and 1 equivalent of 

dimethyl sulfate in acetone under ambient temperature for 1 day. When the reaction was 

heated at reflux, the reaction was complete after 2 or 3 hours, but the yield was lower (60 -

70%). 

benzene 

K2CO3, Me2S0^ 

acetone, RT 

To introduce a carbonyl ortho to the free hydroxyl group in compound 96, we 

examined the Fries rearrangement with various 0-acylated derivatives of 96. The 0-acylated 

compounds were prepared and then examined for rearrangement Lewis acid catalyzed or 

photocatalyzed Fries rearrangements did not provide the desired product 98. 
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96 

OMe OMe 

OH O 

After several experiments, we decided to prepare the lactone intermediate 

101, which might be converted to our desired compound after hydrolysis. From a literature 

survey, we found that 4-hydroxycoumarin 99 was prepared by treatment of phenol with 

malonic acid, anhydrous zinc chloride and phosphorous oxychloride at 60 - it 

proceeded via intramolecular Friedel-Crafts acylation. 

COOH 

COOH 

We expected that this method could be applied to our synthesis of the lactone 

intermediate 101. However, this reaction gave the undesired compound 100 instead of the 

lactone intermediate 101. 



www.manaraa.com

53 

OMe OMe 

malomc acid 
OH not 

MeO MeO 

O O 
100 101 

We assumed that the existing carbonyl group could be causing the problem in the Fries 

rearrangement and the intramolecular Friedel-Craft reactions. We therefore decided to try 

another pathway. 

The next attempt to prepare compound 102 was successful. 

OMe 

MeO O OR' O 

102 

A five step synthesis of 102 (R' = CH3, R = H) from compound 96 provided a highly 

efficient route. Allylation of 96 afforded the allylic ether 103. The treatment of 96 with 

sodium hydride and allyl bromide in boiling THF gave 103 in quantitative yield after silica 

gel chromatography. 
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OCHj 

NaH, allyl bromide 

THF, reflux 

Heating 103 at 260°C for 18 hours in a sealed tube gave the Claisen rearrangement 

product 104 in quantitative yield. 

We then performed the conversion of 104 to 105. Initially, this conversion was done 

by treatment with potassium fôrf-butoxide in boiling ether to give the desired product 105 in a 

high yield.29 However, this method was not reproducible. We found that the purity of the 

potassium terf-butoxide was crucial in this reaction. Another synthetic method was 

necessary, which should be general and reproducible. Rhodium catalyzed isomerization gave 

the solution.30 Addition of a catalytic amount of rhodium(ni) chloride to a solution of 104 

in hot ethanol afforded 105, reproducibly in quantitative yield. Since the reaction could not 

dry toluene 

OCH3 

103 

H3CO O OH 

104 
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OCH 

RhClgSHzO 
104 

Anhyd. EtOH, reflux 
H3CO O OH 

105 

be monitored by TLC because the Rf values of both the starting material and the product were 

the same, the reaction was monitored by taking NMR spectra of the aliquot from the reaction 

mixture. NMR and GC showed that the resulting product included a mixture of cis- and 

froMj-lOS, with the trans isomer as the major product Oxidative cleavage of the alkene 

moiety in 105 to give the aldehyde 106 was the next task. The ozonolysis of 105, 

followed by reductive cleavage with dimethyl sulfide at -TS^C, should have given the desired 

aldehyde 106. However, 105 decomposed under ozonolysis conditions to give 

unidentifiable products. We next attempted oxidative cleavage by the ruthenium-catalyzed 

periodate method. Treatment of 105 with 6 equivalents of sodium periodate in mixed 

solvents (CH3CN-CCI4-H2O), followed by addition of a catalytic amount of ruthenium 

trichloride hydrate, afforded the corresponding aldehyde 106 in only 9.5% yield after silica 

gel chromatography. 

OCH, 

O3 
•/-

105 NalO^, cat.RuCl3"3H20 

CH3CN-CCI4-H2O 
H3CO 

CHO 
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Due to the problem encountered in the oxidative cleavage of 105, we reinvestigated the 

stability of our starting material 105 under oxidative conditions. We felt that the free 

hydroxyl group might be causing the problem in the oxidative cleavage step. We expected 

that protection of the hydroxyl group prior to ozonolysis, might give a solution. Protection 

of 106 was achieved by treatment with methyl iodide and sodium hydride in dry THF at 

ambient temperature. The methylated compound 107 was obtained in 98% yield. 

106 
NaH, Mel 

THF,rt 
H3CO O OCH3 

107 

Now ozonolysis of 107 was examined. Excess ozone was bubbled into the 

dichloromethane solution of 107 at -TS^C for 30 min. Quenching with 6 equivalents of 

dimethyl sulfate and warming to room temperature, followed by aqueous workup, afforded 

the desired aldehyde 108 in a modest yield (~ 40%). After several runs to increase the yield 

of the ozonolysis, we postulated tiiat the excess ozone might be the problem with this 

reaction. We bubbled ozone through the solution until excess ozone from the solution made 

the color of a saturated potassium iodide solution turn from colorless to dark orange. 

Bubbling an equivalent of ozone into a solution of 107 gave the aldehyde 108 in increased 

yield (63 - 85%). 
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OCH, 

107 
O3, CH2CI2. -78°C 

then Me2S CHO 

H3CO O OCH3 
108 

The aldehyde 108 was converted into the P-keto ester 109 by the Roskamp 

method.31 A dichloromethane solution of the aldehyde 108 was added slowly to a solution 

of tin(II) chloride dihydrate and ethyl diazoacetate. Aqueous workup and purification 

afforded a 21% of the P-keto ester 109. 

OCH, 

SnCl2-2H20 
108 — ^ 

N2CHC02Et, CH2CI2 

H3CO O OCH3O O 

& enol form 

OEt 

Due to the low yield and the lack of reproducibilty of the reaction, we 

needed another synthetic method. The work of Pelliciari and coworkers32 provided the 

answer. A solution of LDA at O^C was added dropwise to a -78®C cooled solution of 108 

and ethyl diazoacetate in THF. In situ deprotonation of the diazoester and attack of the 

aldehyde made an a-diazo-P-hydroxy ester. Quenching at -780C with acetic acid and 

aqueous workup afforded a 90% yield of 110 after chromatography. Dilution of 110 in dry 

dimethoxyethane and addition of catalytic rhodium(II) acetate at room temperature caused 

nitrogen extrusion and hydride transfer to give the desired P-keto ester 109 in 94% yield. 
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OCH3 

OEt + 

CH1COCI 
H3CO O OCH3OH O 109 

Py. MgCl2 

CH2CI2, -5°C 

OEt 

OH 0 O O 
113 

Finally, we attempted to deprotect the methoxy groups in compound 113. Initially, 

113 was treated with boron trichloride to effect deprotection. Treatment of 113 with l.OM 

solution of boron trichloride in dichloromethane at -780C afforded two monodemethylated 

products, 114 in 21% yield and 115 in 25% yield, both of which might show chelating 

ability. 

OCH3 

OH O OCH, OH O 

113 m 
CH2Cl2,-78°C OCH3 

115 

OEt 
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Boron tribromide, which is stronger than boron trichloride, was also examined. 

Addition of l.OM boron tribromide to 113 in dry dichloromethane at -SS^C, followed by 

warming to room temperature, gave a single compound in 54% yield. 

BBri 
113 CH2Cl2,-35°C->RT 

OEt 

116 

We expected the bicyclic analog 66 as the product from this deprotection; however, 

compound 116 was obtained instead. Formation of 116 could be explained as shown 

below. 

113 116 

OH O OH OH O 

66  

- H o O  

OEt 
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Deprotection of 113 gave the bicyclic compound 66 which could be converted to the 

hemiacetal 117.24 j^e hemiacetal 117 might lose water to give the resulting compound 

116.34 Therefore, we concluded that isolation of compound 66 was not possible. We 

proposed that 116 might be converted into 66 under enzymatic hydrolysis to form a complex 

with metal ions. Compound 116 itself could be a novel ion chelating analog, and a new 

antibiotic agent. 

In conclusion,we have synthesized four possible chelating analogs, 113,114,115, 

and 116. These analogs will be tested for novel ion chelating ability. Also, we have 

developed a synthetic method for the preparation of the aldehyde 108 from compound 96. 

This method might be extended to the synthesis of other aromatic carbonyl compounds which 

are not available by Friedel-Crafts acylation and Fries rearrangement 
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Preparation of diketone 88. To a -78°C solution of LDA (16.5 mmol) in 5 mL of 

THF was added MOM-protected cyclohexanedione (1.04 g, 6.6 mmol) in 3 mL of THF. 

After stirring for 30 min at -78°C, pyruvonitrile (1.4 mL, 19.8 mmol) was added rapidly. 

The solution was warmed to 0°C, and quenched with acetic acid (10 mL). Water was added, 

and the aqueous layer was extracted with CH2CI2, washed, dried (Na2S04) and 

concentrated. Purification by flash chromatography with 2:1 hexane-ethyl acetate gave 1.06 

g of 88 (82% yield). The resulting product was a mixture of keto and enol tautomers: Rf 

0.29 (2:1 = H:EA); 1h NMR (CDCI3) 5 2.04 (s), 2.28 (s), 2.36 - 2.46 (m), 2.54 - 2.70 

(m), 3.41 - 3.45 (m), 3.46 (s), 3.47 (s), 5.01 - 5.09 (m), 5.44 (s), 5.51 (s); IR (film) 2960, 

1780,1770,1650,1600 cm'l; CI-MS m/e 199 (M+1), 216 (M+18). 

Preparation of diketo ester 89. To a 0°C suspension of 60% NaH (0.12 g, 2.99 

mmol) in 8 mL of dry benzene was added a solution of diketone 88 (0.54 g, 2.72 mmol) in 

7 mL of dry benzene. The reaction mixture was stirred for 1 h at room temperature. A 

solution of dibenzoyl peroxide (0.59 g, 2.45 mmol) in 5 mL of dry benzene was added to the 

above solution at 0°C, and the resulting solution was stirred for 1 h at room temperature. 

The reaction mixture was cooled to 0°C, quenched with water, extracted with ether, washed 

with water, dried (Na2S04), and concentrated. Purification by flash chromatography with 

2:1 hexane-ethyl acetate provided 0.72 g (84% yield) of pure diketo ester 89; Rf 0.36 (2:1 = 

H:EA); 1H NMR (CDCI3) ô 2.35 (s, 3H), 2.52 (tt, J = 4.8, 17.7 Hz, IH), 2.65 - 2.69 (m, 

2H), 2.97 - 3.03 (m, IH), 3.48 (s, 3H), 5.08 - 5.13 (m, 2H), 5.62 (s, br, IH), 7.47 (t, J = 

7.8 Hz, 2H), 7.61 (t, J = 7.5 Hz, IH), 8.07 (d, J = 7.5 Hz, 2H); CI-MS (NH3) m/e 319 

(M+1), 336 (M+18). 
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Allylation of monomethylated compound 96. To a 0°C suspension of NaH 

(0.0324 g, 0.81 mmol) in 3 mL of THF was added a solution of 96 (0.10 g, 0.39 mmol) in 

1 mL of THF. The reaction mixture was stirred for 15 min at room temperature. Freshly 

distilled allyl bromide (0.04 mL, 0.46 mmol) was added dropwise, and the resulting solution 

was heated to reflux for 4 h. The reaction mixture was cooled to 0°C and quenched with 

water. The aqueous layer was extracted with CH2CI2, and the combined organic layers were 

dried (Na2S04) and concentrated. Purification by flash column chromatography with 4:1 

hexane-ethyl acetate afforded 0.12 g of 103 (100% yield): Rf 0.40 (4:1 = H:EA); ^H NMR 

(CDCI3) 8 3.66 (s, 3H), 3.80 (s, 3H), 4.27 (dd, J = 1.5, 6.6 Hz, 2H), 4.88 - 5.00 (m, 

2H), 5.50 - 5.62 (m, IH), 6.82 (d, J = 9.0 Hz, IH), 6.89 (d, J = 8.4 Hz, IH), 6.95 - 7.00 

(m, 2H), 7.15 (d, J = 3.3 Hz, IH), 7.41 (dt, J = 1.8, 7.8 Hz, IH), 7.50 (dd, J = 1.8, 7.5 

Hz, IH); IR (film) 3035, 3000, 2940, 2915,1650,1590 cm'l; 13c NMR (CDCI3) 6 55.48, 

55.58, 69.62, 111.30, 114.26, 114.39, 116.31, 118.41, 120.14, 129.96, 130.34, 131.06, 

132.39, 132.56, 151.45, 153.45, 158.14, 194.81; CI-MS (NH3) m/e 259, 276, 299 

(M+1), 316 (M+18). Colorless oil. 

Claisen rearrangement of allylated compound 103. A solution of allylated 

compound 103 (1.59 g, 5.33 mmol) in 45 mL of toluene was deoxygenated and sealed in a 

glass tube. The tube was heated at 260°C for 18 h. The color of the solution changed from 

colorless to yellow. The tube was cooled, the reaction mixture was concentrated, and the 

residue was purified by flash chromatography with 4:1 hexane-ethyl acetate to afford 1.59 g 

(100%) of rearranged product 104: Rf 0.40 (5:1); ^H NMR (CDCI3) ô 3.46 (d, J = 6.6 Hz, 

2H), 3.61 (s, 3H), 3.77 (s, 3H), 5.09 - 5.17 (m, 2H), 5.96 - 6.09 (m, IH), 6.68 (d, J = 

3.0 Hz, IH), 6.98 - 7.06 (m, 2H), 7.28 (dd, J = 1.5, 7.2 Hz, IH), 7.48 (dt, J = 1.5, 8.7 

Hz, IH), 12.18 (s, IH); IR (film) 3035, 3000, 2940, 2915, 1590, 1490, 1460 cm'l; 13c 
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6.20 - 6.31 (m, IH), 6.62 (dd, J = 1.5, 15.9 Hz, IH), 6.88 (d, J = 3.0 Hz, IH), 6.92 -

7.00 (m, 2H), 7.10 (d, J = 3.0 Hz, IH), 7.45 (dt, J = 1.2, 8.4 Hz, IH), 7.53 (dd, J = 1.5, 

7.5 Hz, IH); IR (film) 3000, 2940, 2915, 1660, 1590 crn-l; 13c NMR (CDCI3) 5 18.75, 

56.52, 56.62, 62.56, 111.58, 112.67, 114.33, 120.10, 124.74, 127.64, 129.25, 130.48, 

132.45, 133.00, 135.46, 149.59, 156.18, 158.52, 195.36; CI-MS (NH3) m/e 313 (M+1), 

314,330 (M+18); HRMS m/e calcd for C19H20O4: 312.13616. Found: 312.13599; m/e 77, 

135, 176, 191, 312. 

Ozonolysis of 107 to prepare the aldehyde 108. A solution of the olefin 107 

(0.90 g, 2.88 mmol) in 60 mL of CH2CI2 was cooled to -78°C and ozone was bubbled into 

the solution through a glass tube at -78®C(~ 4 min). The outlet gas from the reaction mixture 

passed through a saturated KI solution until the color of the KI solution changed from 

colorless to dark orange. The reaction mixture was purged with N2 for 15 min and then 

dimethyl sulfide (0.84 mL, 11.52 mol) was added. The mixture was allowed to warm up to 

room temperature and stirred overnight. After washing with water (three times), the solution 

was dried (Na2S04) and concentrated. The residue was purified by flash chromatography 

with 4:1 hexane-ethyl acetate to afford 0.73 g (85% yield) of the aldehyde 108: Rf 0.38 (3:1 

= H:EA); ^H NMR (CDCI3) 5 3.67 (s, 3H), 3.69 (s, 3H), 3.84 (s, 3H), 6.96 (d, J = 8.4 

Hz, IH), 7.05 (t, J = 7.5 Hz, IH), 7.26 (d, J = 3.3 Hz, IH), 7.44 (d, J = 3.3 Hz, IH), 

7.52 (dt, J = 1.5, 9.3 Hz, IH), 7.63 (dd, J = 1.5, 7.8 Hz, IH), 10.36 (s, IH); IR (film) 

3030, 3000, 2940, 1650(br), 1590, 1570 cm'l; 13c NMR (CDCI3) Ô 55.54, 55.78, 64.99, 

111.62, 112.97, 120.42, 122.65, 128.07, 129.60, 130.67, 133.87, 136.76, 155.32, 

155.70, 157.73, 189.08,193.69; CI-MS (NH3) m/e 301 (M+1), 318 (M+18), 335 (M+35); 

HRMS m/e calcd C17H16O5: 300.09977. Found: 300.10048; m/e 77,92,105,121,135, 

151, 165,179, 300; UV-Vis (CH2CI2) Xmax 242, 332. 
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(CH2C12) kmax 248, 324; EI-MS m/e 77, 91, 121, 135, 177, 219, 299, 340, 386; HRMS 

m/e calcd for C21H22O7: 386.13655. Found: 386.13586. 

Acylation of the keto ester 109. To a solution of dry magnesium chloride (0.007 

g, 0.073 mmol) and keto ester 109 (0.0278 g, 0.072 mmol) in 2 mL of dry CH2CI2 at -50C 

was added pyridine (0.0117 mL, 0.145 mmol) dropwise. After the reaction mixture was 

stirred for 15 min at -5°C, freshly distilled acetyl chloride (0.0051 mL, 0.072 mmol) was 

added. The resulting mixture was stirred for 15 min at 0°C and 4 h at room temperature. 

After being cooled at 0°C, the reaction was quenched with 6N HCl, and diluted with water. 

The aqueous layer was extracted with CH2CI2, dried (Na2S04), and concentrated. The 

residue was purified by flash column chromatography with 2:1 hexane-ethyl acetate 

containing with 10 drops of acetic acid to afford 0.0247 g (80% yield) of 113: Rf 0.45 (2:1 

= H:EA); NMR (CDCI3) 5 0.95 (t, J = 8.7 Hz), 0.96 (t, J = 6.6 Hz), 2.30 (s), 2.44 (s), 

3.41 (s), 3.43 (s), 3.72 (s), 3.74 (s), 3.80 (s), 3.82 (s), 3.96 (q, J = 7.2 Hz), 4.05 (q, J = 

6.9 Hz), 6.93 - 6.99 (m), 7.01 (d, J = 3.0 Hz), 7.07 (d, J = 3.0 Hz), 7.44 - 7.53 (m), 

13.82 (s), 17.60 (s); IR(film) 2980, 2940,1710,1660,1595 cm'l; UV-Vis (CH2CI2) 

kmax 256,294; CI-MS (NH3) m/e 360,432; HRMS m/e calcd for C22H22O8: 414.13147. 

Found: 414.13225; m/e 121, 179, 253, 337, 383, 414. 

Deprotection of compound 113 to prepare dimethoxy compounds 114 

and 115. To a solution of 113 (0.1372 g, 0.32 mmol) in 5 mL of dry CH2CI2 at 

-780C was added a 1.0 M BCI3 solution (3.2 mL, 3.2 mmol) in CH2CI2. After the 

reaction mixture was stirred for 1 h at -780C, the reaction was quenched with water, 

and warmed to room temperature. The aqueous layer was extracted with CH2CI2, 
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dried (Na2S04), and concentrated. Purification with 2:1 hexane-ethyl acetate with 10 

drops of acetic acid gave two pure compounds in a 46% combined yield. 

114: 0.0282 g (21% yield); Rf 0.51 (2:1 = H:EA); IR(film) 3040, 2960, 2920, 

1720, 1630, 1600 cm'l; EI-MS m/e 77, 121, 135, 177, 219, 261, 299, 351, 382, 397, 

428; HRMS m/e calcd for C23H24O8:428.14712. Found 428.14745; UV-Vis 

(CH2CI2) Xmax 264, 294, 332. 

115: 0.0315 g (25% yield); Rf 0.24 (2:1 = H:EA); NMR (CDCI3) 5 1.38 (t, J = 7.2 

Hz, 3H), 2.08 (s, 3H), 3.56 (s, 3H), 3.92 (s, 3H), 4.39 (q, J = 7.2 Hz, 2H), 6.93 (d, J = 

8.4 Hz, IH), 7.64 (dd, J = 1.2, 7.2 Hz, IH), 7.71 (d, J = 3.3 Hz, IH); IR (film) 2960, 

2940,1730,1640,1595 cm-1; CI-MS (NH3) m/e 397 (M+1); 13c NMR (CDCI3) 5 14.21, 

18.88, 55.68, 56.13, 61.79, 108.96, 111.29, 117.15, 120.83, 123.45, 124.20, 129.06, 

130.51, 132.00, 133.88, 147.79, 156.55, 158.53, 164.90, 166.14, 173.73, 191.81; UV-

Vis (CH2CI2) A.max 242, 334; EI-MS m/e 77,121,135,177, 216, 253, 293, 324, 337, 

396; HRMS m/e calcd for C22H20O7: 396.12090. Found: 396.12052. 

Preparation of 116. To a solution of 113 (0.020 g, 0.0467 mmol) in 2 mL of dry 

CH2CI2 at -350c was added l.OM BBrg solution (0.37 mL, 0.37 mmol) in CH2CI2. The 

reaction mixture was warmed to room temperature. After the reaction mixture was stirred for 

4 h, the reaction was quenched with water at 0°C. The aqueous layer was extracted with 

CH2CI2, dried (Na2S04), and concentrated. The residue was purified by flash 

chromatography with 2:1 hexane-ethyl acetate with 8 drops of acetic acid to afford 0.0092 g 

of demethylated compound 116 (54%); Rf 0.36 (2:1 = H:EA); ^H NMR (CDCI3) S 1.40 (t, 

J = 7.2 Hz, 3H), 2.38 (s, 3H), 4.41 (q, J = 7.2 Hz, 2H), 6.85 (t, J = 7.5 Hz, IH), 7.10 (d, 

J = 8.7 Hz, IH), 7.30 (dd, J = 1.2, 8.1 Hz, IH), 7.35 (d, J = 2.1 Hz, IH), 7.55 (dt, J = 

1.2, 8.4 Hz, IH), 8.23 (d, J = 1.2 Hz, IH), 11.88 (s, IH); IR (film) 3320(br), 3040, 2980, 
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2920, 1730, 1630, 1600 cm"!; 13c NMR (CDCI3) 6 14.23, 19.76, 62.13, 112.69, 117.06, 

118.56, 119.25, 119.58, 123.17, 124.45, 129.18, 133.32, 137.54, 146.30, 154.51, 

163.12, 164.64, 168.30, 174.70, 197.71; CI-MS (NH3) m/e 346, 360, 369 (M+1), 383; 

HRMS m/e calcd for C20H16O7: 368.08960. Found: 368.08960; m/e 67, 121, 143,212, 

239, 279, 323, 336, 353, 368; UV-Vis (CH2CI2) Xmax 240, 264, 336; mp 178 - I8OOC. 

Yellow solid. 
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PART III. 

SYNTHETIC APPROACHES TO MITOMYCIN ANALOGS 
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HISTORICAL 

The chemistry of the pyrrolo[l,2-a]indole 1 has progressed extensively since the 

structures of mitomycins 2,3, and 4 were determined by Webb and coworkers in 1962.^ 

The mitomycins were isolated by Hata and coworkers in 1956.2 They have attracted much 

attention, not only because of their unique structures, but also because of their antibiotic 

activity against both gram-positive and gram-negative bacteria and their activity against a 

broad spectrum of solid tumors. ̂  

3 

1 

H :CH,OCONHo 

tN-Y 
1 JL 

o 
2, Mitomycin A, X=0CH3, Y=H 

3, Mitomycin C, X=NH2, Y=H 

4, Porfiromycin, X=NH2, Y=CH3 

I I 

H .CH2OCONH2 
OH 

N-Me 

5, Mitomycin B 

Webb and coworkers prepared the azkidinopyrrolo[l,2-a]indoloquinone 6, the 1,2-

disubstituted mitosene 7, and the desammono-apomitomycin A 8 from the natural 

mitomycins.^ 
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CHjOCONH 
MeO. 

OAc 

Me' 
NHAc 

MeO. 

:N-Me Nfc' 

MeO. 

8 

Since these compounds were found to possess antibacterial activity, 

numerous compounds related to mitosane 9 and mitosene 10 have been synthesized.^ Webb 

proposed the names mitosane for the structure 9 and mitosene for the structure 10, which are 

the structural components common to all mitomycins. ̂  

Me' N-H Me' 

9 10 

A variety of synthetic approaches to mitomycins and related compounds 

has been reported.5 However, only a few syntheses of the mitomycins themselves have been 

reported. In 1977, Kishi and coworkers reported the first total synthesis of mitomycins A 

(2) and C (3), and porfiromycin (4).^ His strategy focused on the construction of the eight-

membered quinone 14 by the intramolecular Michael reaction of 13 and the transannular 

cyclization of 14. 
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CH3O, 

OAc 
OBn / SMe 

.SMe 

OBn 
OBn / OMe 

OMe 

>-H 

CH3O 

OBn 
N(Bn)2 

12 

CH3O 

OBn 
O / OMe 

.OMe 
1. Hz, Pd/C 

CH3O 

OH 
0 L OMe 

.OMe 

2. O2, CH3OH CH3 

BnzN" 

13 

a, R=H 

b, R=CH2CH2CH20Ac 

O H 

14 
a, R=H 

b, R=CH2CH2CH20AC 

H .CHjOH 

HBF. 
CH3O 

2 and 3 

15 

R=CH2CH2CH20AC 

His synthesis began from the nitrile 11 Transformation of 11 to 12 and 

conversion of 12 to 13 provided the precursor for the intramolecular Michael reaction. On 

attempting the Michael reaction on the unprotected aziridine 13a, he observed the formation 

of two products. The minor product was the desired eight-membered quinone 14a, while the 

major product was most likely formed by an interaction of the aziridine nitrogen with the C-1 



www.manaraa.com

80 

carbonyl group. Thus, protection of the aziridine nitrogen was required in order to apply this 

cyclization reaction. The 3-acetoxypropylaziridine 13b was subjected to hydrogenolysis 

followed by treatment with oxygen to afford the eight-membered quinone 14b in 42% yield. 

Clearly, the free amino group, an intermediate in this transformation, cyclized 

intramolecularly to the quinone moiety in the Michael fashion. The next crucial transannular 

cyclization was effected by tetrafluoroboric acid in methylene chloride at room temperature. 

This reaction afforded exclusively decarbamoy 1-Ni-(3-acetoxypropyl)mitomycin A (15). 

Further transformation provided mitomycin A (2) as a racemic mixture. Compound 2 has 

been converted to mitomycin C (3) and porfiromycin (4).^ 

Danishefsky et al. have developed a methodology directed toward the total synthesis of 

mitomycins^, and have also synthesized other novel mitomycin congeners.^ The 

intermolecular selenium-mediated alkylation of a suitably functionalized aniline gave tiie 

mitosene 20 which was converted to the desired mitomycin congeners 21. 

OTBDMS 

OCH3 
16 

17 Br 

OBn 

MeO 

Me 

SePh 
MeO. 

Ivfe' 

OMe 

19  

SePh 

mCPBA 

18  
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OAc OBn 
NkO 

Me N-Me 

OMe 

20 

O 

2 1  

Toward this goal, olefin 17 was prepared from the allylic ether 16 by a Claisen 

rearrangement followed by further functional group transformation. Treatment of 17 with N-

phenylselenophthalimide (N-PSP) provided the single tricyclic selenide 19, which upon 

oxidation gave the mitosene 20. The overall yield of 20 from 16, without chromatography 

of any of the intermediates, was 31%. Further transformation of 20, which involved the 

installation of the aziridine and the quinone formation, provided the aziridinomitosane 21 

which is related in stereochemistry to the major classes of mitomycins. To reach the actual 

mitomycins, Danishefsky and coworkers have studied the C-9a functionalization of 21.7 

In 1987, Fukuyama and Yang reported a total synthesis of D,L-mitomycin by the 

rearrangement of the corresponding isomitomycin 25.9 

Ph 

MeO 

Mi 

toluene 

OMe 

O 
I.RNH2 

2.MeI 
t-BuOK 

OMe 

22  23 
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Ph 

MeO 

M 

CH2OCONH2 
\ OMe .R 

O 

Q MeOH 

Al(0-/-Pr)3 
3 

OMe 
24 25 

The facile intramolecular azide-olefin cycloaddition of the azido 

butenolide 22 gave the tetracyclic aziridine 23. Aminolysis of the strained lactone 23 

followed by methylation afforded the methoxy lactam 24. Further transformation of 24 gave 

the novel antitumor, antibiotic isomitomycin A 25. In 1987, Kono et al. found tiiat 3 and 25 

Therefore, Fukuyama utilized 25 as a synthetic equivalent of mitomycins 2 and 3. 

Equilibration of synthetic 25 with Al(0-/-Pr)3 furnished mitomycin A (3) in 91% yield, 

which was subsequentiy converted to mitomycin C (2) by aminolysis (NH3, MeOH). 

In 1988, Naruta and coworkers reported a synthesis of a 9a-deoxymitomycin 

congener. 11 Their strategy focused on the stereospecific copper-catalyzed double cyclization 

of the azide quinone 26 to the tricyclic quinone 27 in one step. Subsequent stereospecific 

introduction of the aziridine ring to 27 furnished the desired compound 28, which is a 

promising precursor for the synthsis of mitomycins. 

form an equilibrium mixture in which mitomycin A (3) is the predominant isomer. 

Cu(acac)2 

OBn 

,H 

O 
26 

O 
27 
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27 
N-H 

Although a variety of clever syntheses and synthetic approaches have 

been reported, more efficient routes are still needed. 
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COoMe 

32 

t-BuOK, Et20 

18-Crown-6 

COiMe 

33 

33 
BugSnH 

31% 

COgMe 

involves the intramolecular radical cyclization of a 3-iodopropenyl indole 33. The product of 

the reaction of 33 with tributyltin hydride was the dihydro pyrrolo[l,2-a]indole 34, an 

important substructure for the synthesis of mitomycins. 

Kozikowski examined the same bond disconnection, but studied an organopalladium 

mediated reaction. He successfully generated five- and seven-membered rings from a 

palladium-catalyzed cyclization reaction. 

1. KOH, DMSO 

OC'' 

Br 

36 36 

Pd(Ph3P)4 
36 

KOAc, DMA 

130°C, 72% 



www.manaraa.com

86 

Among the compounds formed by this palladium-catalyzed cyclization reaction, both 

compound 38 and its more flexible counterpart 39 showed high affinity for the peripheral 

benzodiazepine receptor. 

(n-Pr)2N- (n-Pr)2N 

38 39 

Additionally, Jones and coworkers recently reported the cyclization of 3-

iodopropenyl oxindole 40.The treatment of 40 with tert-butyllithium gave the vinyl 

lithium derivative which reacted with the carbonyl group of the oxindole. Reduction with 

LiAlH4 gave the pyrroloindoline 41 in 53% yield. They also prepared a six-membered ring 

compound, pyridino [1,2] indole nine, by this method. 

1. t-BuLi, -78°C 

2. LAH, reflux 

53% 
40  41  

Our study began with the readily available indole derivative 43. Owing to the ready 

availability of the indole nucleus and the ease with which it is N-acylated, we chose to explore 

the intramolecular cyclization of several indole derivatives. The acylation of commercially 

availabe indole-3-carboxaldehyde (42) with 2-bromobenzoic acid in the presence of DCC and 

DMAP (cat) led to the N-acylated indole derivative 43 in 98% yield. 
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DCC, DMAP 

COOH 

Initially, intramolecular radical cyclization of 43 was examined. Treatment of 43 with 

tributyltin hydride and AIBN in dry benzene under irradiation with a sun lamp afforded the 

aldehyde 44 in 35% yield after flash chromatography. Interestingly, we did not detect any of 

the dihydroindole-type product 45. 

CHO CHO 

^ J BuqSnH, benzene^ 

AIBN, hv, reflux 

Various other reaction conditions were examined (BugSnCl/NaBHgCN, PhgSnH, 

Bu3SnSnBu3/hD), but aldehyde 44 was the only indole-containing product formed. The 

formation of aldehyde 44 at this stage was not a serious concern, since we eventually 

intended to study the cyclization with 2,3-disubstituted indoles wherein rearomatization 

would not present a problem. 

Compound 47 was next prepared from 42 and 2-bromocyclohexenecrboxylic acid 

(46). DCC coupling of 42 and 46 afforded 47 in 77% yield. 
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42  
• 

DCC, DMAP 

THF.rt 

46 

CHO 

47 47 

A solution of 47 in dry benzene was treated with tributyltin hydride and AIBN in 

refluxing benzene. This radical cyclization yielded the cyclized indole derivative 48 in 42% 

yield. 

47 
BugSnH, AIBN 

benzene, reflux, hv 

CHO 

In an effort to increase the yield, the reaction was repeated using an 

initial concentration of substrate of 0.01 M and slow addition of n-BugSnH and AIBN over 

four hours by syringe pump. The yield of 48 from the modified procedure was 53%. After 

the initial successful results firom the intramolecular radical reaction with the cyclic indole 

precursors 43 and 47, several other precursors (49,50) were examined in radical reactions. 

CHO 

49  

CHO 

50  
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Unfortunately, we did not obtain any of the desired cyclized products. We assumed 

that cyclization did not occur in these cases because cleavage of the amide bond happened 

preferentially. Due to the unsuccessful results of the intramolecular radical cyclization of an 

acyclic precursor, we needed another method for cyclization. 

In 1989, Martin and coworkers studied intramolecular cyclizations in their synthesis of 

an aflatoxin Mi precursor. 16 They found that the palladium-induced intramolecular 

cyclization afforded 52 in 57% yield. However, the radical cyclization of 51 failed. 

We applied this palladium-mediated cyclization to our system. Compound 43 was 

examined. A solution of 43, sodium formate, and tetra-n-butylammonium chloride (TBAC) 

in anhydrous DMF was treated with 10 mole percent bis (acetonitrile) palladium dichloride at 

90°C to give the cyclized product 44 in 48% yield. 

PhSOjO 

Pd(CH3CN)2Cl2 

NaOCHO, TBAC, DMF 

Pd(CH3CN)2Cl2, TBAC 
44 43 

NaOCHO, DMF, 90°C 

Due to the low yield of 44 from the bromide 43, we made the iodide 53 by the 

DCC coupling reaction of 42 and the commercially available o-iodobenzoic acid in 95% 

yield. 
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COOH 

Palladium-mediated cyclization of the iodide 53 gave 44 in 70% yield. 

Palladium-mediated cyclization of the indole 47 also provided 48 in 60% yield. However, 

several attempts at the palladium-mediated cyclization of 49 and 50 failed. From both the 

intramolecular radical- and palladium-mediated cyclization, we obtained two cyclized products 

44 and 48. We propose the following mechanisms for these reactions. 

Presumably, dihydropyrrolo indole intermediate 45 was first formed, and in situ 

dehydrogenation of the labile compound 45 gave the resulting product 44. 

In conclusion, we have developed two convenient and relatively efficient methods for 

the preparation of the pyrroloindole nucleus based on the intramolecular cyclization of vinyl 

and aryl radicals- and the palladium-mediated cyclization of vinylic and aryl halides. 

Additionally, resulting tetracyclic compound 44 could be an analog of the compound 38, 

which showed biological importance. 
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* Our proposed mechanism 

BugSn' Pd(0) 

CHO 
CHO 

NaOCHO 
OPdBr 

1 .CHO 

/ 

/ 
44 
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EXPERIMENTAL 

Unless otherwise noted, materials were obtained from commercial suppliers and were 

used without purification. Diethyl ether and tetrahydrofuran (THF) were distilled from 

sodium benzophenone ketyl. N,N-Dimethylformamide (DMF) was dried by azeotropic 

distillation with benzene, followed by vacuum distillation. Benzene was distilled from 

lithium aluminum hydride. Dichloromethane (CH2CI2), ethyl alcohol, and acetonitrile were 

distilled from calcium hydride. All reactions were conducted under a nitrogen atmosphere, 

and all extracts were dried over anhydrous sodium sulfate or anhydrous magnesium sulfate. 

Apparatus for experiments requiring anhydrous conditions was flame-dried under a stream of 

nitrogen or was dried in a 150OC oven for 12 h. Flash chromatography was performed on 

Kieselgel 60, mesh 230 - 400. Infrared spectra were obtained on a Perkin-EImer 1320 

spectrophotometer. Proton nuclear magnetic resonance spectra (300 Mhz) were obtained 

using a Nicolet Magnetics Cooperation NT-300 spectrometer. All chemicals shifts are 

reported in Ô relative to tetramethylsilane as an internal standard. Splitting patterns are 

designated as a s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). Carbon-13 

NMR spectra were determined on a Nicolet NT-300 spectrometer and are reported in Ô 

relative to CDCI3 (77.06 ppm). High resolution mass spectra were recorded on a Kratos 

model MS-50 spectrometer. Low resolution mass spectra were recorded on a Finnegan 4023 

mass spectrometer. Melting points were determined on a Fisher-Johns melting point 

apparatus and are uncorrected. Elemental analyses were performed by Galbraith Laboratories 

Inc. The purity of all tide compounds was judged to be >90% by ^H NMR spectral 

determinations. 
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General procedure for the preparation of the vinyl and aryl halides. N-

(o Bromobenzoyl)indole 3 carboxaldehyde (43). To a solution of indole-3-

carboxaldehyde (0.20 g, 1.38 mmol) in dry THF (10 mL) were added o-bromobenzoic acid 

(0.31 g, 1.52 mmol), 4-dimethylaminopyridine (DMAP, 8.5 mg, 0.069 mmol), and 1,3-

dicyclohexylcarbodiimide (DCC, 0.31 g, 1.52 mmol) at room temperature under nitrogen. 

This solution was stirred overnight. The THF was removed in vacuo. The residue was 

diluted with ether, the precipitate was filtered off, and the filtrate was concentrated in vacuo. 

The residue was purified by silica gel flash chromatography (3:1 = hexane: ethyl acetate) to 

afford 0.44 g (98%) of pure 43: Rf 0.36 (3:1 = H:EA); NMR (CDCI3) 6 7.46 - 7.50 (m, 

3H), 7.52 - 7.55 (m, 2H), 7.60 (s, IH), 7.74 (d, J = 6.3 Hz, IH), 8.24 - 8.32 (m, IH), 

8.38 (d, J = 7.5 Hz, IH), 10.02 (s, IH); IR (Nujol) 1665, 1715 cm'l; MS: m/e 328, 329, 

330, 346, 347, 362, 363, 364; 13c NMR (CDCI3) Ô 116.30, 119.67, 122.11, 123.15, 

125.93, 126.53, 126.96, 127.98, 129.04, 132.55, 133.52, 135.59, 136.17, 136.32, 

166.74, 185.65. 

N-(o Iodobenzoyl) indole 3 carboxaldehyde (53). The procedure employed 

for the preparation of 43 was followed with indole-3-carboxaldehyde (0.30 g, 2.07 mmol), 

o-iodobenzoic acid (0.67 g, 2.69 mmol), DMAP (0.03 g, 0.269 mmol), and DCC (0.55 g, 

2.69 mmol) in THF (20 mL). The crude product obtained after workup was 

chromatographed, using hexane-ethyl acetate (2:1), to give pure 53 (0.73 g, 95%): Rf 0.48 

(2:1 H:EA) ; ^H NMR (CDCI3) Ô 6.91 (d, J = 8.4 Hz, IH), 7.10 - 7.20 (m, IH), 7.27 -

7.33 (m, 2H), 7.40 -7.57 (m, 2H), 7.94 (d, J = 8.1Hz, IH), 7.98 - 8.04 (m, IH), 8.29 (d, 

J = 7.8Hz, IH), 10.35 (s, IH); IR (Nujol) 1660,1710 cm'l; CI-MS (NH3) m/e 375, 376, 

377, 393, 394, 395, 410, 411, 412; 13c NMR (CDCI3) 6 92.46, 116.38, 122.18, 123.20, 
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125.97, 126.58, 127.01, 128.60, 128.86, 132.41, 136.26, 139.70, 139.92, 168.14, 

185.61. 

N-(2-Bromo*l-cyclohexenecarboxyl) indoIe-3-carboxaldehyde (47). The 

procedure used for the preparation of 43 was followed with indoIe-3-carboxaldehyde (0.30 

g, 2.07 mmol), 2-bromocyclohexene carboxylic acid (0.445 g, 2.17 mmol), DMAP (0.0122 

g, 0.10 mmol), and DCC (0.45 g, 2.17 mmol) in THF (12 mL) to give the pure 47 (0.53 g, 

77%) after purification by silica gel flash chromatography (4:1 = hexane:ethyl acetate): Rf 

0.35 (3:1 H:EA); 1H NMR (CDCI3) S 1.82 - 1.93 (m, 4H), 2.49 (d, br, 2H), 2.66 - 7.50 

(m, 2H), 7.98 (s, IH), 8.28 (d, J = 7.8Hz, IH), 8.43 (d, J = 7.8Hz, IH), 10.14 (s, IH). ; 

IR (Nujol) 1705, 1680 cm'l; CI-MS (NH3) m/e 332, 333, 334, 349, 350, 351, 352, 366, 

367, 368; 13C NMR (CDCI3) Ô 21.12, 23.85, 29.44, 35.45, 116.25, 121.90, 123.14, 

124.50. 125.69, 126.57, 126.81, 133.16, 135.65, 136.16, 168.14, 185.67. 

General procedure for the radical cyclization of 47. A solution of the 

bromide 47 (0.08 g, 0.24 mmol) in dry benzene (4 mL) was heated to reflux, using a 275-W 

sun lamp. A solution of n-BugSnH (0.078 mL, 0.29 mmol) and AIBN (0.0118 g, 0.07 

mmol) in benzene (1 mL) was added to the stirred solution of 47 over 15 min. Heat Arom the 

sun lamp was used to keep the solution at reflux for 4 h. After removal of the benzene, the 

residue was stirred rapidly for 1 h with 5 mL of ether and 5 mL of saturated aqueous KF 

solution. The mixture was extracted with ether and the combined organic layers were dried 

over MgS04, and concentrated in vacuo. The residue was purified by silica gel flash 

chromatography (3:1 = hexane:ethyl acetate) to give the pure product 48 (25 mg, 42%): Rf 

0.49 (3:1 H:EA); 1H NMR (CDCI3) 8 1.79 - 1.92 (m, 4H), 2.35 - 2.40 (m, 2H), 2.64 -

2.68 (m, 2H), 7.16 - 7.21 (m, IH), 7.29 - 7.34 (m, IH), 7.67 (d, J = 7.9Hz, IH), 8.05 (d, 
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J = 7.8Hz, IH), 10.18 (s, IH); IR (Nujol) 1740, 1675 cm'l; CI-MS (NH3) m/e 252, 269; 

EI-MS m/e 70,116,143,167,195, 22,251; HRMS m/e calcd for C16H13O2N: 

251.09463. Found: 251.09438; NMR (CDCI3) Ô 20.34, 21.26, 21.66, 23.92, 112.01, 

117.18, 123.62, 124.25, 127.80, 123.62, 124.25, 127.80, 129.66, 133.64, 138.08, 

143.61, 148.42, 164.99, 184.15; Anal, calcd for C16H13O2N: C, 76.53; H, 5.22; N, 5.58. 

Found: C, 73.54; H, 5.34; N, 4.96; mp. 160 -164 ^C; yellow solid. 

In order to increase the yield of the radical cyclized product, the reaction was repeated, 

using an initial concentration of substrate of 0.01 M and slow addition of n-Bu3SnH and 

AIBN over 3 h by syringe pump. The pure cyclized product was obtained in 53% yield. 

Radical cyclization of 43. The procedure used for the preparation of 48 was 

followed with bromide 43 (0.18 g, 0.549 mmol), Bu3SnH (0.18 mL, 0.659 mmol), and 

AIBN (0.027 g, 0.165 mmol) in dry benzene (11 mL). The crude product obtained after 

workup was purified by silica gel flash chromatography (3:1 = hexane:ethyl acetate) to afford 

the pure cyclized product 44 (48 mg, 35%): Rf 0.63 (3:1 H:EA); NMR (CDCI3) Ô 7.29 

(dd, J = 0.9, 7.5Hz, IH), 7.37 (dd, J = 0.9, 7.5Hz, IH), 7.48 (ddd, J = 0.6, 7.5Hz, IH), 

7.62 (ddd, J = 0.9, 7.5Hz, IH), 7.80 (d, J = 7.5Hz, IH), 7.90 (d, J = 7.8Hz, IH), 8.00 -

8.05 (m, 2H), 10.49 (s, IH); IR (Nujol) 1735,1670 cm'l; EI-MS m/e 70, 95,143,163, 

190,219, 247; HRMS m/e calcd for C16H9O2N: 247.06333. Found: 247.06331; 13c NMR 

(CDCI3) 8 113.36, 116.47, 122.00, 124.56, 125.26, 125.91, 127.40, 130.88, 131.09, 

132.93, 133.12, 133.36, 134.80, 144.53, 162.76, 184.14; Anal, calcd for C16H9O2N: C, 

77.72; H, 3.67; N, 5.67. Found: C, 77.63; H, 3.69; N, 5.61; mp. 224 -226 °C; yellow 

solid. 
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GENERAL SUMMARY 

This dissertation has described the synthesis of analogs of glutamic acid, tetracycline 

and mitomycin. Cyclopropane analogs of glutamic acid have been synthesized by way of the 

reactive cyclopropene intermediate, and several possible chelating analogs of tetracyclines to 

test for novel ion chelating ability were prepared. We have also developed two methods for 

the preparation of the pyrroloindole nucleus based on the intramolecular cyclization of vinyl 

and aryl radicals- and the palladium-mediated cyclization of vinylic and aryl halides. 
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